博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
zoj3329(概率dp)
阅读量:5247 次
发布时间:2019-06-14

本文共 2636 字,大约阅读时间需要 8 分钟。

Description

There is a very simple and interesting one-person game. You have 3 dice, namely Die1Die2 and Die3Die1 has K1 faces. Die2 hasK2 faces. Die3 has K3 faces. All the dice are fair dice, so the probability of rolling each value, 1 to K1K2K3 is exactly 1 / K1, 1 / K2and 1 / K3. You have a counter, and the game is played as follow:

  1. Set the counter to 0 at first.
  2. Roll the 3 dice simultaneously. If the up-facing number of Die1 is a, the up-facing number of Die2 is b and the up-facing number of Die3 is c, set the counter to 0. Otherwise, add the counter by the total value of the 3 up-facing numbers.
  3. If the counter's number is still not greater than n, go to step 2. Otherwise the game is ended.

Calculate the expectation of the number of times that you cast dice before the end of the game.

Input

There are multiple test cases. The first line of input is an integer T (0 < T <= 300) indicating the number of test cases. Then T test cases follow. Each test case is a line contains 7 non-negative integers nK1K2K3abc (0 <= n <= 500, 1 < K1K2K3 <= 6, 1 <= a <=K1, 1 <= b <= K2, 1 <= c <= K3).

Output

For each test case, output the answer in a single line. A relative error of 1e-8 will be accepted.

Sample Input

20 2 2 2 1 1 10 6 6 6 1 1 1

Sample Output

1.1428571428571431.004651162790698

题意:
有三个均匀的骰子,分别有k1,k2,k3个面,初始分数是0,
当掷三个骰子的点数分别为a,b,c的时候,分数清零,否则分数加上三个骰子的点数和,
当分数>n的时候结束。求需要掷骰子的次数的期望。
题解:
设 E[i]表示现在分数为i,到结束游戏所要掷骰子的次数的期望值。
显然 E[>n] = 0; E[0]即为所求答案;
E[i] = ∑Pk*E[i+k] + P0*E[0] + 1; (Pk表示点数和为k的概率,P0表示分数清零的概率)
由上式发现每个 E[i]都包含 E[0],而 E[0]又是我们要求的,是个定值。
设 E[i] = a[i]*E[0] + b[i];
将其带入上面的式子:
E[i] = ( ∑Pk*a[i+k] + P0 )*E[0] + ∑Pk*b[i+k] + 1;
显然,
a[i] = ∑Pk*a[i+k] + P0;
b[i] = ∑Pk*b[i+k] + 1;
当 i > n 时:
E[i] = a[i]*E[0] + b[i] = 0;
所以 a[i>n] = b[i>n] = 0;
可依次算出 a[n],b[n]; a[n-1],b[n-1] ... a[0],b[0];
则 E[0] = b[0]/(1 - a[0]);

#include 
#include
#include
#include
#include
#include
#include
#include
using namespace std;typedef long long ll;int main(){ double p[20]; int t; scanf("%d",&t); while(t--) { memset(p,0,sizeof(p)); int n,k1,k2,k3,a,b,c; scanf("%d%d%d%d%d%d%d",&n,&k1,&k2,&k3,&a,&b,&c); double p0=1.0/(double)(k1*k2*k3); for(int i=1; i<=k1; i++) for(int j=1; j<=k2; j++) for(int k=1; k<=k3; k++) if(i!=a||j!=b||k!=c) p[i+j+k]+=p0; double A[520] = {0}, B[520] = {0}; for(int i=n; i>=0; i--) { for(int k=3; k<=k1+k2+k3; k++) { A[i] +=A[i+k]*p[k]; B[i] +=B[i+k]*p[k]; } A[i]+=p0; B[i]++; } printf("%.15lf\n", B[0]/(1 - A[0]) ); } return 0;}

转载于:https://www.cnblogs.com/martinue/p/5490400.html

你可能感兴趣的文章
语音识别中的MFCC的提取原理和MATLAB实现
查看>>
初识Treap
查看>>
20190317 A
查看>>
poj 1564 Sum It Up
查看>>
解读ASP.NET 5 & MVC6系列
查看>>
数据库创建表空间,用户、密码,授权
查看>>
CSS实现水平垂直居中的1010种方式
查看>>
MYSQL查询增加自增长序号
查看>>
第50节:Java的当中的泛型
查看>>
PHP全栈学习笔记10
查看>>
bzoj 2302: [HAOI2011]Problem c
查看>>
bzoj 3991: [SDOI2015]寻宝游戏
查看>>
Linux学习-1进程
查看>>
理解Javascript的闭包
查看>>
设计模式之简单工厂模式
查看>>
集成学习算法
查看>>
构造方法和final,static关键字
查看>>
cmd 下切换目录
查看>>
从程序员到项目经理(29):怎样写文档
查看>>
(原创)如何将Nios II硬件和软件合成一个文件(NIOS II)(硬件)(软件)(合并)...
查看>>